MoES inviting nominations from Geoscientists/Researchers for forthcoming International Ocean Discovery Program (IODP) expedition 396

International Ocean Discovery Program (IODP)--India is organizing IODP Mid-Norwegian Continental Margin Magmatism International Ocean Discovery Program Expedition 396 on scientific ocean drilling project during 6 August to 6 October 2021. The National Centre for Polar & Ocean Research (NCPOR), Ministry of Earth Sciences, Govt. of India will be providing the financial support to the selected geoscientists/researchers working in established national institutes/organizations and Universities.

Aim of the Expedition is to understand the nature, cause and climate implications of excess magmatism during the northeast Atlantic continental breakup. The expedition would help convene the international community to assess the current state to design, implement and work on the impact/outcome/ of climate services, shared knowledge and
lessons, and emerging examples of good practices to identify gaps and challenges to be addressed in future works.

Following primary objective will be cover in the expedition:

- Determine the conditions of mantle melting
- Determine spatial and temporal variations in along axis volcanic fluxes to test predictions made by fundamentally different geodynamic models for volcanic rifted margin formation including segmentation
- Determine variations in the depositional environment (sub-aerial vs sub-marine) of inner and outer lava flows to test correlations between magma genesis and dynamic thermal support during late syn-rift, break-up, and early post-rift oceanic spreading
- Assess the temporal evolution of the styles of volcanic and magmatic activity in relation to paleoclimate proxies to test the relationship between large-scale volcanism and climate change events
- Investigate the relative importance of environmental consequences of two key processes during the initial opening of the North Atlantic: direct volcanic degassing and explosive thermogenic gas release through hydrothermal vent complexes that expel fluids derived from contact metamorphism
- Early Eocene hothouse and fresh water incursions into the Atlantic
- Carbon capture and storage in basalt provinces

Refer to the following links for more information:

1. www.iodp.org

2. Applications available on the website www.ncpor.res.in

3. Last date of receiving nomination for IODP Expedition 396: **25th October, 2020**

4. A scientific plan is mandatory for a successful nomination.

VS/MoES/MFA/08.10.2020